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LETTER TO THE EDITOR 

On the energy levels of an isotropic anharmonic oscillator 

M Lakshmanant and P KaliappanS 
Department of Physics, Autonomous Postgraduate Centre, University of Madras, 
Tiruchirapalli-620 020, Tamilnadu, India 

Received 30 June 1980 

Abstract. An approximate implicit energy level expression is obtained for a spherically 
symmetric anharmonic oscillator with three degrees of freedom, by using a semi-classical, 
WKB type Bohr-Sommerfeld quantisation rule. 

Quantal anharmonic systems with a single degree of freedom have been extensively 
studied in the literature (Bender and Wu 1969, Biswas et a1 1973, Hioe et a1 1976, 
Banerjee 1978). In particular, several semi-classical (Mathews and Eswaran 1972, 
Lakshmanan 1973 and references therein), WKB type (Handelsman and Lew 1969; see 
also Froman et a1 1979) and phase-integral calculations of energy levels exist for these 
systems. Anharmonic systems with many degrees of freedom, though of much physical 
relevance, are more complicated and consequently much less is known about them (Lu 
and Nigam 1969, Bell et a1 1970, Ehlenberger and Mendelsohn 1972, Hioe 1978, 
Isaacson and Marshesin 1978). Therefore, any explicit calculation is of much relevance 
to an understanding of these systems. One particular case for which semi-classical, 
WKB or phase-integral calculations can be carried out explicitly is the system of a 
spherically symmetric anharmonic oscillator. The Bohr-Sommerfeld semi-classical 
quantisation rule in the modified form (in conjunction with the usual angular momen- 
tum quantisation rules) applicable to such systems is 

where r is the radial coordinate and p is the corresponding canonical momentum. The 
quantisation rule ( l a )  is also equivalent to the familiar first-order WKB approximation 
formula 

where V(r)  corresponds to the potential and 8 is the total energy. For a systematic 
derivation of this result and higher-order corrections, the phase-integral method of 
Froman and Froman (1965, 1974, 1977) could be used. 

i Presently on deputation at the Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, 
England. 
$ On leave from NGM College, Pollachi-642 001, Tamilnadu, India. 

0305-4470/80/090299 + 04$01.50 @ 1980 The Institute of Physics L299 



L300 Letter to the Editor 

In the present paper, we consider the three-dimensional anharmonic oscillator 

( 2 )  

system described by the Hamiltonian 

H = p 2 / 2 m  + tmw2r2+iA  ( r .  r)’, 

r = (rl, r2,rd 

and apply the semi-classical, WKB quantisation rule (1) to obtain the approximate 
energy level expression corresponding to the Schrodinger equation 

[ - ( h 2 / 2 m ) V 2 + ~ m w 2 r 2 + a A ( r .  r ) ’ ] q ( n )  = 8 q ( r ) .  ( 2 a )  

The evaluation of the integral (1) (as well as higher-order corrections, which we will 
report separately) is facilitated by a knowledge of the underlying classical dynamics of 
the system (which itself is of intrinsic interest). To this end, we consider Newton’s 
equation of motion corresponding to the system ( 2 ) :  

m r + m w 2 r + A ( r . r ) r = 0 .  (3) 
This could be separated out in spherical polar coordinates (r, 8,4) in the form 

?(sin’ e)$ = c1 =constant, 

r4e2 + C:/sin2 e = cf = constant 

and 

m f +  mw2r + A r 3  = mCf/r3.  

On integrating equation (4c) explicitly, we can show that it admits periodic solutions of 
the form 

r(t) = A [ I  - p 2  s n ’ ( y t ) ~ ’ ~ ~  (5a)  

where 

(5b) y 2  = ( 1 / 2 m ) [ ( m w 2  +:AA2) + ( m 2 w 4 +  mw’AA’+zh 1 2  A 4 + 2AmC: /A2)1 /2 ]  

and 

Here, the square of the modulus of the Jacobian elliptic function is given by 

k 2  = A A 2 p 2 / 2 m y 2  ( O G  k 2 s p 2 c 1 ) .  ( 5 4  

Then the classical energy 8, corresponding to the Hamiltonian ( 2 )  is obtained by 
substituting the solution (5) in ( 2 ) :  

8 , = $ n o Z A 2 (  1 + ~ + - )  AA’ c: 
2mw w 2 A 4  * 

Now the classical radial momentum is obtained from ( 5 )  as 

dr d 
dt dt 

p = m--E m A - [ l  - p 2  ~ n ~ ( y t ) ] ’ / ~  

(sn u)(cn u)(dn U )  

(1 - p 2  sn2 U)”’ 
= - m A p 2 y  ( U  = yt). (7)  
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Then with the angular momentum quantisation rule 
1 2  2 m 2 C ;  =(1+z) A , 

the quantisation condition (1) for the radial part becomes 

2K (sn2 u)(dn2 u)(cn2 U )  
du = (n  +$)h.  
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(8) 

(9) 

Here K is the complete elliptic integral of the first kind. On evaluation of the integral 
on the left-hand side of equation (9), by using the formulae of Byrd and Friedman 
(1969), one obtains 

2 ( P 2 -  k 2 ) ( 1 - P 2 )  
P 2  

g[ ( p 2 + 2 p 2 k 2 - 3 k 2 ) K  - ( p 2 + p 2 k 2 - 3 k 2 ) E  - 3 k  

where 

E and ll, here, are the complete elliptic integrals of the second and third kinds 
respectively. Equation (10) implicitly gives the quantised expressions for the amplitude 
A ;  this, when substituted in the classical energy expression (6) together with (8), gives 
the quantised energy levels. Useful approximate formulae may be obtained for small k 
and for large k, by approximating K ,  E and I'I suitably in terms of series expansions, but 
we do not consider them here. Equation (10) could be used conveniently for numerical 
computations. 

Finally, we remark that the limiting forms of spherical harmonic and linear 
anharmonic oscillators are obtained as follows. 

(i) Spherical harmonic oscillator limit 
In this case k 2  + 0. Correspondingly we have 

K + $ v ( l + i k 2 ) ,  E + $T( 1 - ik') (12 )  

and 

rI($T, a2)+$7r(1 -a2)-1'2.  

Also we have p2+  (1 - C ; / u 2 A 4 ) .  Thus equation (10 )  becomes 

$myA2(2  - p 2 )  = mC2 + (2n + 1)A. (14a) 

Now substituting the limiting forms for y and p and making use of equation (6), we 
finally obtain 

8 = (2n + 1 + $)Am. (14b)  

Here C: + 0, p + 1 and, further, the range is twice that of the radial case. Correspond- 
ingly, equation (10 )  gives 

(ii) Linear anharmonic oscillator limit 

( 4 m y A 2 / 3 k 2 ) [ k r 2 K  - ( 1 - 2 k 2 ) E ] =  (n  +$)h,  ( 1 5 )  
in agreement with the unpublished results of M Lakshmanan, F Karlsson and P 0 
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Froman (Phase Integral Calculations for the Energy Levels of an Anharmonic Oscil- 
lator). 

The above results on the spherical anharmonic oscillator could be obtained as the 
first-order result of the systematic higher-order phase-integral calculations of Froman 
and Froman (1974). In a subsequent paper, we will report the higher-order (up to 
2N + 1 = 5 )  phase-integral results. 

The authors are grateful to Professor P 0 Froman, University of Uppsala, Sweden for 
his kind encouragement and suggestions. One of us (Kaliappan) would like to thank the 
Principal and Management of NGM College, Pollachi for granting study leave and the 
University Grants Commission for financial assistance under the Faculty Improvement 
Scheme. 
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